Site icon Techplayon

5G NR SDAP – Service Data Adaptation Protocol

The 5G NR has introduce new mechanism to manage the Quality of Service via QoS flow and to handle QoS flow specifications has introduced a new Sublayer SDAP in air-interface procotols stack both at UE and gNB side.  The SDAP (Service Data Adaption Protocol) layer is the topmost L2 sublayer at 5G NR protocol stack Standalone Architecture (SA) where gNB connects to 5G Core network. It interfaces to 5GC UPF using NG-U interface via QoS flows and to the PDCP lower layer via Data Radio Bearers (DRBs). SDAP’s essential role is to map traffic from QoS flows to suitable DRBsSDAP layer doesn’t exist in 4G/LTE since QoS flows were introduced only in 5G.

SDAP Layer Pointers

SDAP Working:

The SDAP sublayer can have multiple SDAP entities, one for each PDU session on the gNBUE Uu interface. An SDAP entity establishment or release are initiated by RRC. The SDAP layer receives downlink data from the User Plane Function over NG-U interface. On NG-U interface DL user plane data is linked to a specific QoS Flow belonging to a specific PDU Session. This QoS Flow is identified using an identity within the ‘PDU Session Container’ which is included within the GTP-U header. The PDU Session is identified using the GTP-U Tunnel Endpoint Identifier (TEID). The SDAP layer maps each QoS Flow onto a specific Data Radio Bearer (DRB) as shown in below figure. In this illustration, we can see that multiple QoS Flows can be mapped onto a single DRB:, or a single QoS Flow can be mapped onto a single DRB. QoS Flows belonging to different PDU Sessions arc mapped onto different DRB.

In the figure above, we can see an example of a single PDU session with 3 QoS flows mapped to 2 DRBs. The first two flows are mapped to a single DRB. Each DRB is handled by a single PDCP entity, which may translate to one or two RLC entities depending on the RLC mode.

In the uplink, a QoS flow is mapped to only one DRB at a time. PDU session has at least one DRB. There’s at most one default DRB in every PDU session. If there’s no uplink mapping, SDAP PDU is sent on the default DRB.Packets belonging to different PDU sessions go on different DRB.

How does SDAP manage Reflective QoS? 

With Reflective QoS, the uplink DRB mapping is omitted, UE monitors the equivalent downlink mapping and applies the same to the uplink. When reflective QoS is enabled, SDAP layer adds header information to the downlink data packets at either the Access Stratum or Non-Access Stratum layers.

Reflective QoS allows the UE to deduce the uplink mapping rules from the downlink mappings, i.e. the uplink rules are copied from the downlink. Downlink data packets can be sent without a header when reflective QoS is not used.

SDAP PDU Format

SDAP Configuration

The SDAP layer is configured  by RRC signalling individually for each DRB within the DRB-ToAddMod parameter structure. The SDAP-Config belonging to this parameter structure is shown below.

The DRB is linked to a specific PDU Session and the UE is informed whether or not SDAP headers are to be included in the uplink and downlink directions. There is also a flag to indicate whether or not the DRB is to be used as a ‘Default DRB’ for the PDU Session. Only a single DRB can be configured as the ‘Default DRB’ for each PDU Session. A PDU is mapped onto the ‘Default DRB’ ifthere is no rule to map the packet onto a specific DRB. An uplink SDAP header is always included when mapping a PDU onto the ‘Default DRB’ .

References:

Related Post:



Exit mobile version